TOO MUCH OF A GOOD THING:
ENVIRONMENTAL IMPACTS OF INCREASING
ATMOSPHERIC NITROGEN DEPOSITION
ON PEATLANDS

Luca Bragazza1,2,3

1WSL-Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne (Switzerland)
2Laboratory of Ecological Systems, EPFL - École Polytechnique Fédérale de Lausanne (Switzerland)
3Department of Life Science and Biotechnologies, University of Ferrara (Italy)

\textit{e-mail: luca.bragazza@wsl.ch}
Impacts of atmospheric nitrogen deposition: responses multiple plant and soil parameters across contrasting ecosystems in long-term field experiments

GARETH K. PHOENIX*, BRIDGET A. EMMETT†, ANDREA J. BRITTON‡, SIMON J. M. CAPORN§, NANCY B. DISE§, RACHEL HELLIWELL‡, LAURENCE JONES!, JONATHA LEAKE*, IAN D. LEITH, LUCY J. SHEPPARD†, ALWYN SOWERBY†, MICHAEL G. PILKINGTON*, EDWIN C. ROWE†, MIKE R. ASHMORE|| and SALLY A. POWER**

*Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK; †Centre for ECO and Hydrology Bangor, Environment Centre Wales, Deiniol Road, Bangor, North Wales LL57 2UW, UK; ‡The James Hutton Institute, Craigbeulder, Aberdeen, AB51 6QY, UK; §School of Science and the Environment, University of Manchester, Manchester, M15 6GD, UK; †Centre for Ecology and Hydrology Edinburgh, Bush Estate, Penicuik, EH26 0QB, UK; ||Environment Department, University of York, York, YO10 5DD, UK; **Division of Biology, Imperial College London, Silwood Park, Ascot, Berkshire, SL5 7PY, UK

Nonlinear responses to nitrogen and strong interactions with phosphorus additions drastically alter the structure of a high arctic ecosystem

Seth J. T. Arens,1,2 Patrick F. Sullivan,1 and Jeffrey M. Welker1

Who Put the N in PristiNe?
Impacts of Nitrogen Enrichment in Fragile Mountain Environments

Rachel Hellwell
Andrea Britton
Shelia Gibbs
Julie Fisher
Julian Aherne

AMBIO 2012, 41:235–246
DOI 10.1007/s13280-012-0250-0

Effects of Atmospheric Nitrogen Deposition on Remote Freshwater Ecosystems

Fabio Lepori, François Keck

Long-Term Change in the Nitrogen Cycle of Tropical Forests

Peter Hietz,1* Benjamin L. Turner,2 Wolfgang Wanek,3 Andreas Richter,1 Charles A. Nock,2 S. Joseph Wright2

Environmental Pollution
Contents lists available at ScienceDirect
Environmental Pollution
ejournal homepage: www.elsevier.com/locate/envpol

Review
Nitrogen deposition effects on Mediterranean-type ecosystems: An ecological assessment

Rafael Ochoa-Huesa1*, Edith B. Allen1, Cristina Braunquine1, Cristina Cruz1, Teresa Dias2, Mark E. Finn2, Esteban Manrique4, M. Esther Pérez-Corona5, Lucy J. Sheppard4, William D. Steck2

1 Department of Plant Physiology and Ecology, Centre de Ciencies Mèdiques i iambientals, Parc Científic de la Salut, C/ Doctor Afo, 11, 08028 Barcelona, Spain
2 Department of Plant Sciences, School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
3 Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08904, USA
4 Centre de Ciencies Mèdiques i iambientals, Parc Científic de la Salut, C/ Doctor Afo, 11, 08028 Barcelona, Spain
5 Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA

4 NOVEMBER 2011 VOL 334 SCIENCE

Environmental Pollution 155 (2006) 2265–2279
Overview

1. Worldwide trends of N deposition

2. Effects at organism level
 2.1 *Sphagnum* mosses and vascular plants
 2.2 Soil microbes

3. Effects at community level
 3.1 Litter and organic matter decomposition
 3.2 Gas exchange

4. Interaction of N with climate warming

5. Open questions
Overview

1. Worldwide trends of N deposition

2. Effects at organism level
 2.1 *Sphagnum* mosses and vascular plants
 2.2 Soil microbes

3. Effects at community level
 3.1 Litter and organic matter decomposition
 3.2 Gas exchange

4. Interaction of N with climate warming

5. Open questions
1. Worldwide trends of N deposition

Background

Anthropogenic
1. Worldwide trends of N deposition

Fritz Haber (1868-1934) Carl Bosch (1874-1940)
Past, present and future of nitrogen deposition

Figure 2. Spatial patterns of total inorganic nitrogen deposition in (a) 1860, (b) early 1990s, and (c) 2050, mg N m$^{-2}$ yr$^{-1}$.

Overview

1. Worldwide trends of N deposition

2. Effects at organism level
 2.1 *Sphagnum* mosses and vascular plants
 2.2 Soil microbes

3. Effects at community level
 3.1 Litter and organic matter decomposition
 3.2 Gas exchange

4. Interaction of N with climate warming

5. Open questions
Nitrogen deposition and *Sphagnum* tissue chemistry

2. Effects at organism level

Fig. 1 Trend of mean (± SE) nitrogen (N) concentration in *Sphagnum* capitula along the gradient of atmospheric N deposition.

2. Effects at organism level

Sphagnum productivity

2. Effects at organism level

Reduced *Sphagnum* filtering ability

![Graph showing the relationship between atmospheric N deposition and corrected N concentration in bog water.](image)

- **DIN**
 - $y = 37x - 6.9$
 - $R^2 = 0.96, p < 0.01$
- **DON**
 - $y = 15x - 3.3$
 - $R^2 = 0.84, p < 0.01$

2. Effects at organism level

Response of vascular plant cover

Bragazza et al. (2012) *Global Change Biology* 18:1163
The “revenge of vascular plants”

Control (ambient N dep. = 0.2 g m$^{-2}$ yr$^{-1}$)

After 8 years of N fertilization (ambient N dep. + 3 g m$^{-2}$ yr$^{-1}$)

Interspecific competition:
Sphagnum vs. vascular plants

2. Effects at organism level

Chong et al. (2012) *Écoscience* 19:89
Overview

1. Worldwide trends of N deposition

2. Effects at organism level
 2.1 *Sphagnum* mosses and vascular plants
 2.2 Soil microbes

3. Effects at community level
 3.1 Litter and organic matter decomposition
 3.2 Gas exchange

4. Interaction of N with climate warming

5. Open questions
2. Effects at organism level

Response of soil microbes to high N deposition

3.3. Nutrient deposition

Our knowledge of how nutrient deposition affects microbial population is rather fragmented. Indeed, while a large number of studies have looked at the long-term impact of nutrient deposition on vegetation and carbon cycling (e.g. Bubier et al., 2007; Juutinen et al., 2010; Limpens et al., 2006; Bragazza et al., 2012), only a few studies have looked at microorganisms and their response to increased nutrient deposition (Table 6). Enhanced N and S depo-
2. Effects at organism level

Bragazza et al. (2012) Global Ch. Biol. 18: 1163

Bragazza et al. (2012) *Global Ch. Biol.* 18: 1163
Interspecific competition: *Sphagnum* vs. microbes

2. Effects at organism level

Limpens et al. (2003) *Oikos* 103: 59

Fig. 1. A Fruiting body of *Lyophyllum palustre*, B Necrotic *Sphagnum cuspidatum*, C Early infection around stem of *S. papillosum* and D Defoliated stem part of *S. papillosum*, also referred to as sign of infection.
Overview

1. Worldwide trends of N deposition level

2. Effects at organism level
 2.1 *Sphagnum* mosses and vascular plants
 2.2 Soil microbes

3. Effects at community level
 3.1 Litter and organic matter decomposition
 3.2 Gas exchange

4. Interaction of N with climate warming

5. Open questions
3. Effects at community level

Increased N content in peat litter enhances CO₂ release under laboratory conditions

Fig. 1. Hourly CO₂ emission from litter peat samples after 4 and 10 days of incubation in relation to atmospheric N deposition in study bogs. Relationships were explained by a logarithmic regression for both incubation periods \(y = 0.98 + 0.21 \ln(x), R^2 = 0.75, P < 0.01 \) and \(y = 0.49 + 0.11 \ln(x), R^2 = 0.73, P < 0.01 \), respectively. Each value is the mean (± 1 SE) of three to six litter peat samples.

Bragazza et al. (2006) *PNAS* 103: 1936
N content in plant litter and short-term field decomposition

<table>
<thead>
<tr>
<th>Plant Species</th>
<th>Initial N concentration (mg g(^{-1}))</th>
<th>Initial P concentration (mg g(^{-1}))</th>
<th>Mass loss 1 year</th>
<th>Mass loss 3 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>13.0(^{b}) ± 0.36</td>
<td>0.84(^{a}) ± 0.05</td>
<td>38.9(^{b}) ± 1.7</td>
<td>62.8(^{a}) ± 4.4</td>
</tr>
<tr>
<td>Fertilized</td>
<td>15.4(^{a}) ± 0.25</td>
<td>0.76(^{b}) ± 0.09</td>
<td>44.0(^{a}) ± 5.7</td>
<td>66.0(^{a}) ± 9.8</td>
</tr>
<tr>
<td>Sphagnum fuscum</td>
<td>6.6(^{b}) ± 0.16</td>
<td>0.31(^{a}) ± 0.01</td>
<td>9.6(^{b}) ± 3.0</td>
<td>15.8(^{a}) ± 6.2</td>
</tr>
<tr>
<td>Control</td>
<td>15.7(^{a}) ± 0.95</td>
<td>0.29(^{b}) ± 0.02</td>
<td>14.1(^{a}) ± 3.4</td>
<td>18.9(^{a}) ± 4.2</td>
</tr>
<tr>
<td>Fertilized</td>
<td>14.2(^{a}) ± 0.24</td>
<td>0.87(^{a}) ± 0.01</td>
<td>44.9(^{a}) ± 6.9</td>
<td>65.4(^{a}) ± 4.9</td>
</tr>
<tr>
<td>Eriophorum vaginatum</td>
<td>14.8(^{a}) ± 0.41</td>
<td>0.85(^{a}) ± 0.04</td>
<td>37.8(^{b}) ± 2.8</td>
<td>59.7(^{b}) ± 14.6</td>
</tr>
</tbody>
</table>

Different superscripts for the same plant species indicate significant differences between treatments (Student t-test; \(P < 0.05\)). Mean values are based on five replicates for initial litter chemistry and on eight replicates for litter mass loss.

Bragazza et al. (2012) *Global Ch. Biol.* 18: 1163
Nutrient retention in decomposing *Sphagnum* litter

Nitrogen (N)

- **Control**
- **Fertilized**

<table>
<thead>
<tr>
<th>Nutrient loss (%)</th>
<th>1 yr</th>
<th>3 yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-80</td>
<td>-60</td>
</tr>
<tr>
<td>Fertilized</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Phosphorus (P)

- **Control**
- **Fertilized**

<table>
<thead>
<tr>
<th>Nutrient loss (%)</th>
<th>1 yr</th>
<th>3 yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fertilized</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fertilized treatment shows a significant increase in nutrient loss compared to *Control*, as indicated by the asterisks (*) and (**).

3. Effects at community level

Positive feedback on increasing soil N availability due to reduced N immobilization

Bragazza et al. (2012) *Global Ch. Biol.* 18: 1163
Soil enzymatic activity

3. Effects at community level

...under laboratory conditions

...under field conditions

Bragazza et al. (2006) *PNAS* 103: 1936

Bragazza et al. *Unpublished data*
3. Effects at community level

Overall trends in litter accumulation with increasing N deposition

The increased productivity of vascular plants does not compensate for the reduced productivity of recalcitrant litter by *Sphagnum* plants
Overview

1. Worldwide trends of N deposition level

2. Effects at organism level
 2.1 *Sphagnum* mosses and vascular plants
 2.2 Soil microbes

3. Effects at community level
 3.1 Litter and organic matter decomposition
 3.2 Gas exchange

4. Interaction of N with climate warming

5. Open questions
Lower NEE (net ecosystem exchange) after 5 years, but mainly due to a reduced photosynthetic rate of *Sphagnum* plants.

N deposition and N$_2$O emission: the role of vegetation as N sink

Fig. 6. Mean N$_2$O-N flux (+/- s.e.m) from the control (no added N) and N treated (oxidised (Nox), reduced (Nred) and ammonia (amm)) plots (~56 kg N ha$^{-1}$ yr$^{-1}$) at Whim bog in 2009 and 2010.

Fig. 7. Immobilization of N above and below ground, in the peat from the control (no added N) and N treated (oxidised (Nox), reduced (Nred) and ammonia (amm)) plots (~56 kg N ha$^{-1}$ yr$^{-1}$) at Whim bog in 2009.

CH$_4$ and N deposition: the role of pH, soil temperature and vegetation cover

Eriksson et al. (2010) *J. Geophysical Res.* 105: G04036
Overview

1. Worldwide trends of N deposition level

2. Effects at organism level
 2.1 *Sphagnum* mosses and vascular plants
 2.2 Soil microbes

3. Effects at community level
 3.1 Litter and organic matter decomposition
 3.2 Gas exchange

4. Interaction of N with climate warming

5. Open questions
The reduction in plant fresh weight after long-term exposure to high nitrogen deposition rates was not reflected in a significant reduction in dry weight, indicating adverse effects on capitulum morphology and cell anatomy, probably via a reduction in hyaline/chlorophyllous cell volume ratio. As a consequence, water content in high nitrogen treated plants reduced from 1960% to 1500%. According to Silvola (1990),

Elevated atmospheric CO₂ and increased nitrogen deposition: effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) Warnst

EDWIN VAN DER HEIJDEN, STEVEN K. VERBEEK and PIETER J. C. KUIPER

Department of Plant Biology, University of Groningen, Kerklaan 30, 9750 NN Haren, The Netherlands
Nutrient additions in pristine Patagonian *Sphagnum* bog vegetation

Fig. 2. Visible effects of treatments [Control (a), N-treatment (b), P-treatment (c), NP-treatment (d)] on *Sphagnum magellanicum*-dominated plots. Oblique photographs were taken after a dry spell in January 2009, when water levels were 35 cm below the surface, 15 cm lower than the average summer water level. For treatment details see Fig. 1.

...at community level

To find out more about PEATBOG contact:

Daphne Lai
Research Administrator
Manchester Metropolitan University
Department of Environmental & Geographical Sciences
John Dalton Building
Chester Street
Manchester M1 5GD
United Kingdom

Email: D.Lai@mmu.ac.uk

Or visit our website at: www.eqs.mmu.ac.uk/peatbog

Or visit our interactive blog at: www.peatbog.org

PEATBOG is funded through the European Research Area Network (ERA-Net) Project BiodivERsA, supported by the European Commission 6th Framework Programme and national funding organizations. http://www.eurobiodiversa.org/
Overview

1. Worldwide trends of N deposition

2. Effects at organism level
 2.1 *Sphagnum* mosses and vascular plants
 2.2 Soil microbes

3. Effects at community level
 3.1 Litter and organic matter decomposition
 3.2 Gas exchange

4. Interaction of N with climate warming

5. **Open questions**
1. N deposition effect on decomposition of old organic matter

2. N deposition effect on root architecture, morphology and functioning

3. N deposition effect on soil microbial structure and enzymatic activity
Luca Bragazza (luca.bragazza@wsl.ch)
N deposition and N$_2$O emission

![Graph showing cumulative N$_2$O flux vs total N input]

Higher N$_2$O emission with higher N availability