BELOW GROUND EFFECTS OF O$_3$ IN MEADOWS

Sirkku Manninen, Teri Kanerva, Hermanni Aaltonen, Kaisa Rämö
University of Helsinki, Finland
Kristiina Regina, Ansa Palojarvi, Katinka Ojanperä, Martti Esala
MTT Agrifood Research Finland
WHY TO STUDY?

✓ Studies on semi-natural vegetation at community level scarce
 • pot-grown monocultures: legumes most sensitive
✓ Impact on below-ground processes unstudied
✓ Protected biotopes
✓ Interaction with CO$_2$
HYPOTHESES

O$_3$

Plant productivity

Soil NH$_4^+$ availability

Microbial community

Growth, maintenance and mortality

Microbial N immobilisation

Leaf and root litter
Production, mortality and chemistry

Substrate availability

Ecosystem N$_2$O, CO$_2$ and CH$_4$ fluxes

Gross N mineralisation
Jokioinen (60°49’ N, 23°28’ E)

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation (mm)</td>
<td>207</td>
<td>302</td>
<td>397</td>
</tr>
<tr>
<td>Mean temperature (°C)</td>
<td>15,8</td>
<td>14,3</td>
<td>13,3</td>
</tr>
<tr>
<td>Temp. OTC - open field (°C)*</td>
<td>0,7</td>
<td>0,8</td>
<td>0,6</td>
</tr>
</tbody>
</table>

* during the fumigations
GROUND-PLANTED MESOCOSMS

MONOCULTURED PLANTS IN POTS

SOIL
✓ peat:sand (1:1, v:v)
✓ pH_{H_2O} 6.8, C 3.3%, N 0.07%, P 8.3 mg/l
✓ NPK fertilizer (twice in 2002)
✓ *Rhizobium* inoculation (2002)
GROUND-PLANTED MESOCOMS

✓ 2.25 m², rooting depth 25 cm
✓ 2 grasses: *Agrostis capillaris*, *Anthoxanthum odoratum* (25 seedlings/species)
✓ 3 forbs: *Campanula rotundifolia*, *Fragaria vesca*, *Ranunculus acris* (25 seedlings/species)
✓ 2 legumes: *Trifolium medium* (5), *Vicia cracca* (8)
Agrostis capillaris AND Lathyrus pratensis MONOCULTURES

✓ 15 l pots, 33 cm in diameter
✓ 113 plants / m²
O₃ decreased bulk soil NH₄⁺ concentration

Fig. 1 (a) Concentrations of NH₄⁺-N, (b) and NO₃⁻-N, (c) NH₄⁺-N/NO₃⁻-N ratio and (d) mineral N concentration. Means marked with different letters within each sampling differ at P < 0.05 (measured with one-way ANOVA). A tendency (P < 0.10) between the NF control treatment and the other treatments are marked with a P value. Error bars represent positive standard deviation of the means (n = 3)
O₃ reduced N₂O, CH₄ and CO₂ fluxes

Table 3
Main effects (p-values) of elevated O₃ and/or CO₂ and time and treatment (O₃ and CO₂) interactions on the daily fluxes of N₂O, CH₄ and CO₂ in the growing seasons 2002–2004

<table>
<thead>
<tr>
<th>Source</th>
<th>N₂O</th>
<th>CH₄</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2002</td>
<td>2003</td>
<td>2004</td>
</tr>
<tr>
<td>O₃</td>
<td>n.s.</td>
<td>n.s.</td>
<td>0.076</td>
</tr>
<tr>
<td>CO₂</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>O₃ + CO₂</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>Time</td>
<td><0.001</td>
<td>0.093</td>
<td>0.034</td>
</tr>
<tr>
<td>Time*O₃</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>Time*CO₂</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>Time*O₃ + CO₂</td>
<td>0.070</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

n.s. not significant (p > 0.10).
Impact of other abiotic factors on GHG fluxes

Table 5
Spearman’s correlation coefficients of the fluxes of N₂O, CH₄ and CO₂ with soil and environmental variables

<table>
<thead>
<tr>
<th></th>
<th>N₂O</th>
<th>CH₄</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>N</td>
<td>r</td>
</tr>
<tr>
<td>Mineral N spring<sup>a</sup></td>
<td>-0.12</td>
<td>45</td>
<td>0.15</td>
</tr>
<tr>
<td>Mineral N fall<sup>b</sup></td>
<td>0.29</td>
<td>45</td>
<td>-0.72</td>
</tr>
<tr>
<td>Total N<sup>c</sup></td>
<td>-0.35</td>
<td>30</td>
<td>-0.70</td>
</tr>
<tr>
<td>Organic C</td>
<td>0.16</td>
<td>30</td>
<td>-0.13</td>
</tr>
<tr>
<td>pH<sup>c</sup></td>
<td>-0.41*</td>
<td>30</td>
<td>-0.16</td>
</tr>
<tr>
<td>Denitrification potential<sup>c</sup></td>
<td>-0.11</td>
<td>30</td>
<td>-0.20</td>
</tr>
<tr>
<td>Nitrification potential<sup>c</sup></td>
<td>-0.16</td>
<td>30</td>
<td>-0.15</td>
</tr>
<tr>
<td>Total plant biomass<sup>d</sup></td>
<td>-0.28</td>
<td>30</td>
<td>-0.59</td>
</tr>
<tr>
<td>Plant biomass inside the collar<sup>d</sup></td>
<td>-0.71</td>
<td>15</td>
<td>-0.26</td>
</tr>
<tr>
<td>Air temperature</td>
<td>0.27**</td>
<td>237</td>
<td>0.06</td>
</tr>
<tr>
<td>Soil temperature</td>
<td>0.34**</td>
<td>210</td>
<td>0.02</td>
</tr>
<tr>
<td>Soil water content</td>
<td>0.53**</td>
<td>120</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Asterisks denote two-tailed significances (*p < 0.05; **p < 0.01; ***p < 0.001).
O₃ decreased microbial (PLFA) biomass in bulk soil

Table 2
O₃ and CO₂ main and interaction effects (as P-values) on the total, bacterial, actinobacterial, fungal, and mycorrhizal PLFAs as well as the fungal:bacterial PLFA ratio in 2002 and 2004 (two-way ANOVA), when the open-field plots (AA) were excluded from the analyses.

<table>
<thead>
<tr>
<th></th>
<th>Total PLFA</th>
<th>Bacterial PLFA</th>
<th>Actinobacterial PLFA</th>
<th>Fungal PLFA</th>
<th>Mycorrhizal PLFA</th>
<th>Fungal: bacterial PLFA ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃</td>
<td>n.s</td>
<td>0.007</td>
<td>n.s</td>
<td>0.034</td>
<td>n.s</td>
<td>0.029</td>
</tr>
<tr>
<td>CO₂</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>0.034</td>
<td>n.s</td>
<td>n.s</td>
</tr>
<tr>
<td>O₃ x CO₂</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
<td>n.s</td>
</tr>
</tbody>
</table>

n.s., Not significant.
✓ O₃ decreased bulk soil microbial (PLFA) biomass
✓ O₃ x rust interaction?
✓ O₃ decreased P availability?
✓ O$_3$ positively correlated with bulk soil C and negatively with P and C:N ratio
✓ O$_3$ decreased *Agrostis* (shoot and total) biomass
Mesocosms mimic natural meadows as regards greenhouse gas fluxes and potential activities of nitrifying and denitrifying bacteria

Teri Kanerva, Kristiina Regina, Kaisa Rämö, Kristiina Karhu, Katinka Ojanperä & Sirkku Manninen

1University of Helsinki, Department of Biological and Environmental Sciences, P.O. Box 65, 000 14, University of Helsinki, Finland; 2MTT, Agrifood Research Finland, Environmental Research, 31 600 Jokioinen, Finland, 3Corresponding author*

![Graph showing daily N₂O fluxes from natural meadows and mesocosms](image)

Figure 3. Daily N₂O fluxes from the natural meadows 1, 2 and 3 (Nm 1, 2 and 3) and from the mesocosms of the chambered and unchambered plots in June—September 2003. Error bars represent standard deviation of the means (n = 3).
The soil was low in N. However,

 ✓ Shoot biomass:
 mesocosms (NF 528 g/m²) ≈ natural meadows;
 3-7 x biomass in monocultures

 ✓ Root-to-shoot ratio:
 mesocosms 1.03; *Agrostis* 0.25 and *Lathyrus* 0.16

 ✓ Bulk soil total microbial biomass, C and N:
 mesocosms ≈ monocultures
DECREASED N₂O, CO₂ AND CH₂ EMISSIONS / FLUXES

PLANT PRODUCTIVITY
Shoot biomass
- mesocosms -40%*
- *Agrostis* -46%
- *Lathyrus* +18%

Root biomass
- mesocosm -35%*
- *Agrostis* -49%
- *Lathyrus* +48%

LITTER QUALITY
Visible injury / Rust

MICROBIAL COMMUNITY SIZE AND STRUCTURE

NH₄⁺ AVAILABILITY -35%

PO₄³⁻, SO₄²⁻
THANK YOU!

ACKNOWLEDGEMENTS

Peter Huhtala
Kristiina Karhu
Suvi Nikula
Hannele Slotte